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Outline

1. Geoadditive Modelling of Continuous Survival Times.
2. Inferential Concepts: Empirical Bayes vs. Full Bayes.

3. Continuous Time Multi-State Models.
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Thomas Kneib Childhood mortality in Nigeria

Childhood mortality in Nigeria

e Data from the 2003 Demographic and Health Survey (DHS) in Nigeria.

e Retrospective questionnaire on the health status of women in reproductive age and
their children.

e Survival time of n = 5323 children.
e Numerous covariates including spatial information.

e Analysis based on the Cox model:

A(t 1) = Ao(t) exp(uu'v).
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e Limitations of the classical Cox model:
— Restricted to right censored observations.
— Post-estimation of the baseline hazard.
— Proportional hazards assumption.
— Parametric form of the predictor.
— No spatial correlations.

— Structured hazard regression.
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Interval censored survival times
e |n theory, survival times should be available in days.

e Retrospective questionnaire = most uncensored survival times are rounded (Heaping).
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e In contrast: censoring times are given in days.

= [reat survival times as interval censored.
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e Likelihood contributions:

P(T>C) = S(C)

P(T € [,—Tlowera Tupper]) — S(TZO@UGT) _ S(Tupp€7’>

~ exp [ /O leA(t)dt] — exp [ /O Tupper)\(t)dt] .

e Derivatives of the log-likelihood become much more complicated for interval censored
survival times.

e Numerical integration techniques have to be used in both cases.

e Piecewise constant time-varying covariates and left truncation can easily be included.
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Structured hazard regression

e Introduce a more flexible, semiparametric hazard rate model

A(t;) = exp | go(t) + Z gj(8)25(t) + D fe(xr(®) + fopar(s) +u(t)'y

where

— go(t) = log(Ao(t)) is the log-baseline-hazard,

— g, are time varying effects of covariates z,(t),

— fr are nonparametric functions of continuous covariates x(t),
— fspat 1S @ spatial function,

— u(t)'y are parametric effects.
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Model Components and Priors

e Penalised splines for log-baseline, time-varying effects and nonparametric effects.

— Approximate g; (or fi) by a weighted sum of B-spline basis functions
fl@) =) &Bj).

— Employ a large number of basis functions to enable flexibility.

— Penalise differences between parameters of adjacent basis functions to ensure
smoothness.
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Model Components and Priors

Thomas Kneib

e Bivariate penalised splines.

e Varying coefficient models.

— Effect of covariate x varies smoothly over the domain of a second covariate z:

f(xvz) — a:g(z)

— Survival time as effect modifier = Time-varying effects x - g(t).

10
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e Spatial effect for regional data: Markov random fields.
— Bivariate extension of a first order random walk on the real line.
— Define appropriate neighbourhoods for the regions.

— Assume that the expected value of fq,u¢(s) is the average of the function
evaluations of adjacent sites.

f(t+1)

E[f(t)[f(t-1),f(t+1)]

f(t=1) —
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e Spatial effect for point-referenced data: Stationary Gaussian random fields.
— Well-known as Kriging in the geostatistics literature.
— Spatial effect follows a zero mean stationary Gaussian stochastic process.
— Correlation of two arbitrary sites is defined by an intrinsic correlation function.

— Can be interpreted as a basis function approach with radial basis functions.
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e All effects can be cast into one general framework.
e All vectors of function evaluations f; can be expressed as
fi = Zj&;
with design matrix Z; and regression coefficients &;.

e Generic form of the prior for &;:

kj
3

- 1
p(&|77) o (1) 2 exp -5;55}3%55
J

e K; >0 acts as a penalty matrix, rank(K;) = k; < d; = dim(&;).

° Tj2 > 0 can be interpreted as a variance or (inverse) smoothness parameter.
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Bayesian Inference

e Fully Bayesian inference:

— All parameters (including the variance parameters 72) are assigned suitable prior
distributions.

— Typically, estimation is based on MCMC simulation techniques.
— Usual estimates: Posterior expectation, posterior median (easily obtained from the
samples).
e Empirical Bayes inference:

— Differentiate between parameters of primary interest (regression coefficients) and
hyperparameters (variances).

— Assign priors only to the former.
— Estimate the hyperparameters by maximising their marginal posterior.

— Plugging these estimates into the joint posterior and maximising with respect to
the parameters of primary interest yields posterior mode estimates.
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e MCMC-based inference:

— Assign inverse gamma prior to 7'32:
1 b
2 j
p(75) X a7 exp | ——3
(Tj) J 75
Proper for aj >0,b; >0 Common choice: a; = b; = € small.
Improper for  b; =0, a; = —1 Flat prior for variance 77,
b; =0, aj = —3 Flat prior for standard deviation T;.

— Conditions for proper posteriors in structured additive regression are available.
— Gibbs sampler for 77|-:

Sample from an inverse Gamma distribution with parameters

1 1
a; = a; + irank(Kj) and b = bj + §§;Kj§j.
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— Metropolis-Hastings update for &,|-:

Propose new state from a multivariate Gaussian distribution with precision matrix
and mean

1 -
szz;WZj+§Kj and  m; =P ZW (G —n_;).
j
IWLS-Proposal with appropriately defined working weights W and working

observations y.

o Efficient algorithms make use of the sparse matrix structure of P; and K.
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e Empirical Bayes inference.

— Consider the variances 72 as unknown constants to be estimated from their

j
marginal posterior.

— Consider the regression coefficients £, as correlated random effects with multivariate
Gaussian distribution

= Use mixed model methodology for estimation.
e Problem: In most cases partially improper random effects distribution.
e Mixed model representation: Decompose
& = X0+ Vb,
where

p(B;) o const and b; ~ N (0, szlkj).

= (3, is a fixed effect and b; is an i.i.d. random effect.

Structured Hazard Regression 17



Thomas Kneib Bayesian Inference

e This yields a variance components model with pedictor
n=XB+Vb

where in turn
p(B) o const and b~ N(0,Q).
e Obtain empirical Bayes estimates / penalized likelihood estimates via iterating
— Penalized maximum likelihood for the regression coefficients 3 and b.
— Restricted Maximum / Marginal likelihood for the variance parameters in Q:

L@Q) = [ L(3.0.Qp(0)d5db — max.

e Involves a Laplace approximation to the marginal likelihood (corresponding to REML
estimation of variances in Gaussian mixed models).
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BayesX

e BayesX is a software tool for estimating structured additive regression models.

< BayesX
am-n

=2 oo a0 Tigxamplesiresults]
[

=1}

e Available from

http://www.stat.uni-muenchen.de/ bayesx
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Childhood mortality in Nigeria Il
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Childhood mortality in Nigeria Il
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Childhood mortality in Nigeria Il
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Multi-State Models

Multi-State Models

e Multi-state models form a general class for the description of the evolution of discrete
phenomena in continuous time (i.e. event history analysis).

e \We observe paths of a process

X = {X(#),t >0} with X(t)e{l,... q}.

e Yields a similar data structure as for Markov processes.

e Examples:

— Recurrent events:

Q==
\\@//
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— Disease progression:

(@)

I

e (Homogenous) Markov processes can be compactly described in terms of the transition
intensities

— Competing risks:

Aij = lim P(X(t+ At) =j|X(t) =1)
At—0 At
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Human Sleep Data

e Human sleep can be considered an example of a recurrent event type multi-state
model.

e State Space:

Awake Phases of wakefulness
REM Rapid eye movement phase (dream phase)
Non-REM  Non-REM phases (may be further differentiated)
e Aims of sleep research:
— Describe the dynamics underlying the human sleep process.

— Analyse associations between the sleep process and nocturnal hormonal secretion.

— (Compare the sleep process of healthy and diseased persons.)
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e Data generation:

— Sleep recording based on electroencephalographic (EEG) measures every 30 seconds
(afterwards classified into the three sleep stages).

— Measurement of hormonal secretion based on blood samples taken every 10
minutes.

— A training night familiarizes the participants of the study with the experimental
environment.

= Sleep processes of 70 participants.

e Simple parametric approaches are not appropriate in this application due to
— Changing dynamics of human sleep over night.

— The time-varying influence of the hormonal concentration on the transition
intensities.

— Unobserved heterogeneity.

= Model transition intensities nonparametrically.
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Specification of Transition Intensities

e To reduce complexity, we consider a simplified transition space:

Awake

)\As(t)

)\SA(t)

Sleep

ANr(t)

Non-REM

Arn(t)

REM
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e Model specification:

Aasi(t) = exp _%()A&(t) X bq(:AS)'
Asai(t) = exp _,y(()SA>(t) n bESA)‘
ANRi(t) = exp _’VéNR)(t) + et () + bq(:NR>_
ArN,i(t) = exp _fyéRN)(t) + Ci(t)’ngN)(t) 4 bz(RN)'

where

(t) 1 cortisol > 60 n mol/l at time ¢
Ci =
' 0 cortisol < 60 n mol/l at time t,

bq(;j) ~ N(O,sz) = transition- and individual-specific frailty terms.
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Counting Process Representation

Counting Process Representation

e A multi-state model with £ different types of transitions can be equivalently expressed
in terms of k counting processes Nj(t), h = 1,...,k counting these transitions.

REM
|

Non-REM

awake => sleep

T
740

Non-REM => REM

T
760

780

800

740

760

780

800

sleep => awake

T
740

REM => Non-REM

T
760

780 800

720

740

760

780 800

Structured Hazard Regression

30



Thomas Kneib Counting Process Representation

e From the counting process representation we can derive the likelihood contributions.

e The counting process representation also provides a possibility for model validation
based on martingale residuals.

e Every counting process is a submartingale and can therefore be (Doob-Meyer-)
decomposed as

Nhi(t) = Ahi(t)—l-Mhi(t)

— /t Ani () Yy (8)du + My; (),

where My;(t) is a martingale and Ay;(t) is the (predictable) compensator process of
Npi(t).

e The martingales Mp;(t) can be interpreted as continuous-time residuals.

e Plots of My;(t) against ¢t can be used to compare models, evaluate the model fit, etc.
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Human Sleep Data Il

e Baseline effects:
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e Time-varying effects for a high level of cortisol:

Non-REM —> REM (mixed model) REM -> Non-REM (mixed model)

e The fully Bayesian approach detects individual-specific variation for all transitions.

e The empirical Bayes approach only detects individual-specific variation for the
transition between REM and Non-REM.

Structured Hazard Regression 33



Thomas Kneib Human Sleep Data Il

Martingale residuals REM => Non-REM
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Human Sleep Data Il
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Summary and Outlook

e Computationally feasible semiparametric models for hazard rates / transition
Intensities.

e Fully Bayesian and empirical Bayes inference.
e General censoring mechanisms for analysing survival times.
e Model validation of multi-state models via martingale residuals.

e Future work:
— Interval censored multi-state models.

— Idea: MCMC-based imputation of unobserved path information.
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