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Thomas Kneib Geoadditive Regression: Forest Health Example

Geoadditive Regression: Forest Health Example

• Aim of the study: Identify factors influencing the health status of trees.

• Database: Yearly visual forest health inventories carried out from 1983 to 2004 in a
northern Bavarian forest district.

• 83 observation plots of beeches within a 15 km times 10 km area.

• Response: binary defoliation indicator yit of plot i in year t
(1 = defoliation higher than 25%).

• Spatially structured longitudinal data.
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Thomas Kneib Geoadditive Regression: Forest Health Example

• Covariates:

Continuous: average age of trees at the observation plot
elevation above sea level in meters
inclination of slope in percent
depth of soil layer in centimeters
pH-value in 0 – 2cm depth
density of forest canopy in percent

Categorical thickness of humus layer in 5 ordered categories
level of soil moisture
base saturation in 4 ordered categories

Binary type of stand
application of fertilisation
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Thomas Kneib Geoadditive Regression: Forest Health Example

• Possible model:

P (yit = 1) =
exp(ηit)

1 + exp(ηit)

where ηit is a geoadditive predictor of the form

ηit = f1(ageit, t)+ interaction between age and calendar time.

f2(canopyit)+ smooth effects of the canopy density and

f3(soilit)+ the depth of the soil layer.

fspat(six, siy)+ structured and

bi+ unstructured spatial random effects.

x′itβ parametric effects of type of stand, fertilisation,
thickness of humus layer, level of soil moisture
and base saturation.
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Thomas Kneib Geoadditive Regression: Forest Health Example
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Thomas Kneib Geoadditive Regression: Forest Health Example
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• Questions:

– How do we estimate the model? ⇒ Inference

– How do we come up with the model specification? ⇒ Model choice and variable
selection

⇒ Componentwise boosting for geoadditive regression models.

Boosting Geoadditive Regression Models 5



Thomas Kneib Boosting in a Nutshell

Boosting in a Nutshell

• Boosting is a simple but versatile iterative stepwise gradient descent algorithm.

• Versatility: Estimation problems are described in terms of a loss function ρ.

• Simplicity: Estimation reduces to iterative fitting of base-learners to residuals.

1. Initialize η̂[0] ≡ offset; set m = 0.

2. Increase m by 1. Compute the negative gradients (‘residuals’)

ui = − ∂

∂η
ρ(yi, η)|η=η̂[m−1](xi)

, i = 1, . . . , n.

3. Fit the base-learner g to the negative gradient vector u1, . . . , un, yielding ĝ[m](·).
4. Up-date η̂[m] = η̂[m−1](·) + ν · ĝ[m](·)
5. Iterate steps 2.-4. until m = mstop.
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Thomas Kneib Boosting in a Nutshell

• Example: Linear model with quadratic loss function ρ(y, η) = |y − η|2.
– The gradient of the loss function yields the least squares residuals.

– Base-learner: Least-squares fit ĝ.

– In each iteration, update η via

η̂[m] = η̂[m−1] + 0.1ĝ

i.e. multiply the current fit with a reduction factor.
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Thomas Kneib Boosting in a Nutshell
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Thomas Kneib Boosting in a Nutshell
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Thomas Kneib Boosting in a Nutshell

• Scales to more complex models:

– Define a loss function (e.g. the negative log-likelihood).

– Define a simple base-learning procedure (e.g. a regression tree).

• The reduction factor ν turns the base-learner into a weak learning procedure (avoids
to large steps in the boosting algorithm).

• Crucial point: Determine optimal stopping iteration mstop.

• Componentwise boosting: Replace the single base-learning procedure by a sequence
of base-learners. Only the best-fitting one is updated in each iteration

⇒ Structured model fit.

• In geoadditive models: Each additive component is assigned a separate base-learner.

• Boosting implicitly implements variable selection (early stopping).
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Base-Learners For Geoadditive Regression Models

• Componentwise base-learning procedures for geoadditive regression models can be
derived from univariate Gaussian smoothing approaches such as

u = g(x) + ε smooth nonparametric effect

u = g(x1, x2) + ε smooth surface / spatial effect

u = x1g(x2) + ε varying coefficients

where ε ∼ N(0, σ2I).

• All base-learners in geoadditive regression models will be given by penalised least
squares (PLS) fits

û = X(X ′X + λK)−1X ′u
characterised by the hat matrix

Sλ = X(X ′X + λK)−1X ′.
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Thomas Kneib Base-Learners For Geoadditive Regression Models

• Univariate spline smoothing: Approximate the function g(x) by a linear combination
of B-spline basis functions, i.e.

g(x) =
∑

j

βjBj(x)

• In matrix notation:
u = Xβ + ε.

• Least squares estimate for β and predicted values:

β̂ = (X ′X)−1X ′u ŷ = X(X ′X)−1X ′u
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Thomas Kneib Base-Learners For Geoadditive Regression Models
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Thomas Kneib Base-Learners For Geoadditive Regression Models

• B-spline fit depends on the number and location of basis functions

⇒ Difficult to obtain a suitable compromise between smoothness and fidelity to the
data.

• Add a roughness penalty term to the least squares criterion.

• Simple approximation to squared derivative penalties: Difference penalties

pen(β) = λ
∑

j

(βj − βj−1)2 or pen(β) = λ
∑

j

(βj − 2βj−1 + βj−2)2.

• Can be written as quadratic forms

λβ′D′Dβ = λβ′Kβ

based on difference matrices D.
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Thomas Kneib Base-Learners For Geoadditive Regression Models

• Replace the least-squares estimate and fit with penalised least squares (PLS) variants:

β̂ = (X ′X + λK)−1X ′u û = X(X ′X + λK)−1X ′u

• The base-learner is characterised by the hat matrix

Sλ = X(X ′X + λK)−1X ′.

• PLS base-learners can also be derived for

– Interaction surfaces f(x1, x2) and spatial effects f(sx, sy),

– Varying coefficient terms x1f(x2) or x1f(sx, sy),

– Random intercepts bi and random slopes xbi, and

– Fixed effects xβ.
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Thomas Kneib Base-Learners For Geoadditive Regression Models

• PLS base-learner for interaction surfaces and spatial effects f(x1, x2):
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• Define bivariate Tensor product basis functions

Bjk(x1, x2) = Bj(x1)Bk(x2).
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Thomas Kneib Base-Learners For Geoadditive Regression Models

• Based on penalty matrices K1 and K2 for univariate fits define rowwise and
columnwise penalties as

penrow(β) = λβ′ (I ⊗K1) β

pencol(β) = λβ′ (K2 ⊗ I) β.

• The overall penalty is then given by

pen(β) = λβ′ (I ⊗K1 + K2 ⊗ I)︸ ︷︷ ︸
=K

β.
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Thomas Kneib Base-Learners For Geoadditive Regression Models

• Varying coefficient terms x1f(x2) or x1f(sx, sy):

X = diag(x11, . . . , xn1)X∗

where X∗ is the design matrix representing f(x2) or f(sx, sy).

• Cluster-specific random intercepts: The design matrix is a zero/one incidence matrix
linking observations to clusters and the penalty matrix is a diagonal matrix.

• Fixed effects: Set the smoothing parameter to zero (unpenalised least squares fit).

• All base-learners can be described in terms of a penalised hat matrix

Sλ = X(X ′X + λK)−1X ′

with suitably chosen design matrix X and penalty matrix K.
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Thomas Kneib Complexity Adjustment

Complexity Adjustment

• The flexibility of penalised least squares base-learners depends on the choice of the
smoothing parameter.

• Typical strategy: fix the smoothing parameter at a large pre-specified value.

• Difficult when comparing fixed effects, nonparametric effects and spatial effects.

⇒ More flexible base-learners will be preferred in the boosting iterations leading to
potential selection (and estimation) bias.

• We need an intuitive measure of complexity.
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Thomas Kneib Complexity Adjustment

• The complexity of a linear model can be assessed by the trace of the hat matrix,
since

trace(X(X ′X)−1X ′) = ncol(X).

• In analogy, the effective degrees of freedom of a penalised least-squares base-learner
are given by

df(λ) = trace(X(X ′X + λK)−1X ′).

• Choose the smoothing parameters for the base-learners such that

df(λ) = 1.
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Thomas Kneib Complexity Adjustment

• Difficulty: For most PLS base-learners, the penalty matrix K has a non-trivial null
space, i.e.

dim(N (K)) ≥ 1.

• For example, a polynomial of order k − 1 remains unpenalised for penalised splines
with k-th order difference penalty.

⇒ df(λ) = 1 can not be achieved.

• A reparameterisation has to be applied, leading for example to

f(x) = β0 + β1x + . . . + βk−1x
k−1 + fcentered(x).

• Assign separate base-learners to the parametric components and a one degree of
freedom PLS base-learner to the centered effect.

• This will also allow to choose between linear and nonlinear effects within the boosting
algorithm.
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Thomas Kneib A Generic Boosting Algorithm

A Generic Boosting Algorithm

• Generic representation of geoadditive models:

η(·) = β0 +
r∑

j=1

fj(·)

where the functions fj(·) represent the candidate functions of the predictor.

• Componentwise boosting procedure based on the loss function ρ(·):
1. Initialize the model components as f̂

[0]
j (·) ≡ 0, j = 1, . . . , r. Set the iteration

index to m = 0.

2. Increase m by 1. Compute the current negative gradient

ui = − ∂

∂η
ρ(yi, η)

∣∣∣∣
η=η̂[m−1](·)

, i = 1, . . . , n.
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Thomas Kneib A Generic Boosting Algorithm

3. Choose the base-learner gj∗ that minimizes the L2-loss, i.e. the best-fitting
function according to

j∗ = argmin
1≤j≤r

n∑

i=1

(ui − ĝj(·))2

where ĝj = Sju.

4. Update the corresponding function estimate to

f̂
[m]
j∗ (·) = f̂

[m−1]
j∗ (·) + νSj∗u,

where ν ∈ (0, 1] is a step size. For all remaining functions set

f̂
[m]
j (·) = f̂

[m−1]
j (·), j 6= j∗.

5. Iterate steps 2 to 4 until m = mstop.
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Thomas Kneib A Generic Boosting Algorithm

• Determine mstop based on AIC reduction or cross-validation.

• Boosting implements both variable selection and model choice:

– Variable selection: Stop the boosting procedure after an appropriate number of
iterations (for example based on AIC reduction).

– Model choice: Consider concurring base-learning procedures for the same covariate,
e.g. linear vs. nonlinear modeling.
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Thomas Kneib Habitat Suitability Analyses

Habitat Suitability Analyses

• Identify factors influencing habitat suitability for breeding bird communities collected
in seven structural guilds (SG).

• Variable of interest: Counts of subjects from a specific structural guild collected at
258 observation plots in a Northern Bavarian forest district.

• Research questions:

a) Which covariates influence habitat suitability (31 covariates in total)? Does spatial
correlation have an impact on variable selection?

b) Are there nonlinear effects of some of the covariates?

c) Are effects varying spatially?

• All questions can be addressed with the boosting approach.
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Thomas Kneib Habitat Suitability Analyses

Variable Selection in the presence of spatial correlation

• Selection frequencies in a spatial Poisson-GLM:

GST DBH AOT AFS DWC LOG SNA COO

non-spatial GLM 0 0 0 0.06 0.3 0 0.01 0

spatial with 5 df 0 0.02 0 0.01 0.05 0 0.01 0

spatial with 1 df 0 0 0 0.06 0.15 0 0 0

COM CRS HRS OAK COT PIO ALA MAT

non-spatial GLM 0.03 0.04 0.03 0.05 0.06 0 0.04 0.06

spatial with 5 df 0 0.01 0 0 0 0 0.01 0.05

spatial with 1 df 0.03 0.02 0.02 0.04 0.05 0 0.03 0.04

GAP AGR ROA LCA SCA HOT CTR RLL

non-spatial GLM 0.03 0 0 0.1 0.07 0 0 0

spatial with 5 df 0.01 0 0.01 0.01 0.01 0 0 0

spatial with 1 df 0.03 0 0 0.07 0.06 0 0 0

BOL MSP MDT MAD COL AGL SUL spatial

non-spatial GLM 0 0.06 0 0 0.05 0 0 0

spatial with 5 df 0 0 0 0 0.03 0 0 0.76

spatial with 1 df 0 0.04 0 0 0.04 0 0 0.3
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Thomas Kneib Habitat Suitability Analyses

• Spatial effects for high and low degrees of freedom (SG4):
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• Spatial correlation has non-negligible influence on variable selection.

• Making terms comparable in terms of complexity is essential to obtain valid results.
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Thomas Kneib Habitat Suitability Analyses

Geoadditive Models

• Instead of linear modelling, allow for nonlinear effects of all 31 covariates.

• Decompose nonlinear effects into a linear part and a nonlinear part with one degree
of freedom.

• Variable selection for SG5 results in 7 variables without any influence, 3 linear effects,
and 21 nonlinear effects.
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Thomas Kneib Habitat Suitability Analyses
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Thomas Kneib Habitat Suitability Analyses
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Thomas Kneib Habitat Suitability Analyses

Space-varying effects

• Instead of allowing for nonlinear effects, consider space-varying effects xg(sx, sy) for
all covariates.

• Decompose space-varying effects into a linear part and a space-varying part with one
degree of freedom.

• For SG3, 6 variables have no influence at all, 13 variables have linear effects, and 12
variables are associated with space-varying effects.

• The spatial effect is completely explained by the space-varying effects of the covariates.
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Thomas Kneib Habitat Suitability Analyses
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Thomas Kneib Summary & Extensions

Summary & Extensions

• Generic boosting algorithm for model choice and variable selection in geoadditive
regression models.

• Avoid selection bias by careful parameterisation.

• Implemented in the R-package mboost.

• Future plans:

– Derive base-learning procedures for other types of spatial effects (regional data,
anisotropic spatial effects).

– Construct spatio-temporal base-learners based on tensor product approaches.

– Extend methodology to model selection in continuous time survival models.
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Thomas Kneib Summary & Extensions

• Reference: Kneib, T., Hothorn, T. and Tutz, G.: Model Choice and Variable Selection
in Geoadditive Regression. Under revision for Biometrics.

• Find out more:

http://www.stat.uni-muenchen.de/~kneib
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