Structured additive regression for multicategorical space-time data: a mixed model approach

Thomas Kneib Department of Statistics, University of Munich

- 1. Forest health data
- 2. Regression models for ordinal responses
- 3. Structured additive regression
- 4. Mixed model representation
- 5 Results
- 6. Software
- 7. Discussion

Thomas Kneib Forest health data

Forest health data

- Data collected in yearly forest health inventories carried out in a forest in northern Bavaria from 1983 to 2001.
- 83 observation points with beeches in an area extending 15 km from east to west and 10 km from north to south.
- y_{it} , the defoliation degree of beech i in year t, is measured in three ordered categories (multicategorical response):

```
y_{it} = 1 no defoliation,

y_{it} = 2 defoliation 25% or less,

y_{it} = 3 defoliation above 25%.
```

Covariates:

```
t calendar time, s_i site of the beech, a_{it} age of the tree in years, u_{it} further (mostly categorical) covariates.
```

Thomas Kneib Forest health data

Figure 1: Temporal development of the frequency of the damage states:

— no damage,

--- medium damage,

· · · severe damage.

Figure 2: Spatial distribution of the beeches and percentage of time points for which a beech was classified to be damaged (damage state 2 or 3).

Regression models for ordinal responses

- Response y_{it} follows multinomial distribution with three ordered categories r = 1, 2, 3.
- Model the cumulative probabilities

$$P(y_{it} \le r) = F(\theta_r - \eta_{it})$$

with thresholds $-\infty = \theta_0 < \theta_1 < \theta_2 < \theta_3 = \infty$ and linear predictor η_{it} .

• $F(\cdot)$ can be any cumulative distribution function:

```
standard normal \implies cumulative probit model, logistic \implies cumulative logit model.
```

- Consider a random variable with density f = F' and expectation η_{it} .
 - ⇒ Linear predictor determines shift on latent scale.

Figure 3: The shaded areas represent $P(y_{it} \leq 2)$ for different values of η_{it} .

- Limitations of a purely parametric approach:
 - Spatio-temporal structure of the data implies spatial and temporal correlations.
 - Nonlinear effects of continuous covariates?
 - Complex interactions between covariates?
- ⇒ Structured additive regression models.

Structured additive regression

• Replace usual parametric predictor with a flexible semiparametric predictor

$$\eta_{it} = f_1(t) + f_2(a_{it}) + f_3(t, a_{it}) + f_{spat}(s_i) + u'_{it}\gamma,$$

where

- f_1 and f_2 are nonparametric functions of calendar time and age,
- $-f_3$ is an interaction surface between calendar time and age,
- $-f_{spat}$ is a spatial function, and
- -u is a vector of further covariates with parametric effects.
- Structured additive regression extends (and combines) generalized additive mixed models, geoadditive models and varying coefficient models.
- Allows unified treatment of all effects within a Bayesian framework.

- $f_1(t)$, $f_2(a_{it})$: P-splines
 - Approximate f_j by a B-spline of a certain degree (basis function approach).
 - Penalize differences between parameters of adjacent basis functions to ensure smoothness.
 - Alternatives: Random walks, more general autoregressive priors.
- $f_3(t, a_{it})$: Two-dimensional extensions of P-splines
 - Define two-dimensional basis functions based on tensor products of one-dimensional B-splines.
 - Use priors from spatial statistics for penalization.
 - Alternative: Varying coefficient models, if one of the interacting variables is categorical.

- $f_{spat}(s_i)$: Markov random fields
 - Consider two trees as neighbors if their distance is less than (e.g.) 1.2 km.
 - Assume that the expected value of $f_{spat}(s)$ is the average of the function evaluations of adjacent sites.
- $f_{spat}(s_i)$: Stationary Gaussian random fields (kriging)
 - Spatial effect follows a zero mean stationary Gaussian stochastic process.
 - Correlation of two arbitrary sites is defined by an intrinsic correlation function.
- Split up spatial effect into structured and unstructured part:

$$f_{spat}(s_i) = f_{str}(s_i) + f_{unstr}(s_i)$$

The unstructured effect can be modelled by i.i.d. random effects, the structured effect by a MRF or a GRF.

- All effects f_j can be expressed as the product of a design matrix Z_j and a vector of regression coefficients β_j .
- Rewrite the structured additive predictor in matrix notation as

$$\eta = Z_1\beta_1 + Z_2\beta_2 + Z_3\beta_3 + Z_{spat}\beta_{spat} + U\gamma.$$

- Bayesian approach: Assign an appropriate prior to β_j .
- All priors can be cast into the general form

$$p(\beta_j|\tau_j^2) \propto \exp\left(-\frac{1}{2\tau_j^2}\beta_j'K_j\beta_j\right)$$

where K_j is a penalty matrix and au_j^2 is a smoothing parameter.

• Type of the covariate and prior beliefs about the smoothness of f_j determine special Z_j and K_j .

Mixed model representation

• Each parameter vector β_j can be partitioned into an unpenalized part (with flat prior) and a penalized part (with i.i.d. Gaussian prior) yielding a variance components model

$$\eta = X^{unp}\beta^{unp} + X^{pen}\beta^{pen}$$

with

$$p(\beta^{unp}) \propto const$$
 $\beta^{pen} \sim N(0, \Lambda)$

and

$$\Lambda = \text{blockdiag}(\tau_1^2 I, \dots, \tau_4^2 I).$$

- Regression coefficients are estimated via modified Fisher scoring.
- The mixed model representation allows for restricted maximum likelihood / marginal likelihood estimation of the variance components:

$$L(\Lambda) = \int L(\beta^{unp}, \beta^{pen}, \Lambda) p(\beta^{pen}) d\beta^{pen} d\beta^{unp} \to \max_{\Lambda}.$$

- From a Bayesian perspective, we get empirical Bayes / posterior mode estimates.
- Closely related to penalized likelihood.
- Fahrmeir, Kneib and Lang (2004) derive numerically efficient formulae that allow the computation even for fairly large data sets.

Thomas Kneib Results

Results

Figure 4: Time trend.

Figure 5: Age effect.

Thomas Kneib Results

Figure 6: Structured spatial effect.

Figure 7: Interaction effect.

Thomas Kneib Software

Software

• Estimation was carried out using BayesX, a public domain software package for Bayesian inference.

Available from

http://www.stat.uni-muenchen.de/~lang/bayesx

Thomas Kneib Software

- Features (within a mixed model setting):
 - Responses: Gaussian, Gamma, Poisson, Binomial, ordered and unordered multinomial.
 - Continuous covariates and time scales: Random Walks, P-splines, autoregressive priors for seasonal components.
 - Spatial Covariates: Markov random fields, stationary Gaussian random fields, two-dimensional P-Splines.
 - Interactions: Two-dimensional P-splines, varying coefficient models with continuous and spatial effect modifiers.
 - Random intercepts and random slopes.

Discussion

- Models for nominal responses are supported, too.
- Comparison with fully Bayesian approach based on MCMC:

Cons:

- Credible intervals rely on asymptotic normality.
- Only plug-in estimates for functionals.

Pros:

- No questions concerning mixing and convergence.
- No sensitivity with respect to prior assumptions on variance parameters.
- Somewhat better point estimates (in simulations).

• Future work:

- Multinomial probit models with correlated latent utilities.

- Category-specific covariates in nominal models.
- Covariate-dependent thresholds in ordinal models.

Thomas Kneib References

References

- Fahrmeir, L., Kneib, T. and Lang, S. (2004): Penalized structured additive regression for space-time data: A Bayesian perspective. Statistica Sinica (to appear).
- Kneib, T. and Fahrmeir, L. (2004): Structured additive regression for multicategorical space-time data: A mixed model approach. SFB 386 Discussion Paper 377, University of Munich.
- Both available from

http://www.stat.uni-muenchen.de/~kneib