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Brand Choice Data

e When purchasing a specific brand, the consumer is faced with a discrete set of
alternatives.

e One aim of marketing analyses: Identify the influence of covariates on brand choice
behaviour.

e Two types of covariates:
— Global covariates: Fixed for all categories, e.g. age, gender of the consumer.
— Brand-specific covariates: Depending on the category, e.g. loyalty to a product,

price, presence of special advertisement.

e We will consider data on purchases of the most frequently bought brands of coffee,
ketchup and yogurt.
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Brand Choice Data

e Main characteristics of the data sets:

Coffee  Ketchup  Yogurt

Number of brands five three five
Market share 53% 87% 74%
Sample size 49.083 26.820 66.679

e Covariates:

Loyalty
Reference price

Difference between
reference price and price

Promotional Activity

Loyalty of the consumer to a specific brand.
Internal reference price built through experience.

Deviation of the actual price from the reference price.

Dummy-variables for the presence of special promotion.

e Loyalty and reference price are estimated based on an exponentially weighted average

of former purchases.
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e Model the decision using latent utilities associated with buying a specific brand 7:

L,ET), r=1,... k.

e Note: We do not observe the utilities but only the brand choice decisions.

e Rational behaviour: The consumer chooses the product that maximizes her/his
utility:

Yi=r <« LY):_nllakagS).

e Express the utilities in terms of covariates and an error term:

L = wha™ w7 4 el
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e |f the error term is standard extreme value distributed, we obtain the multinomial

logit model.
(7)
PlY,=r)= exp(nz ) O r=1,....k—1
1+ Zs 1 GXp( )
with

77@( ") = = uia™ + (w; (r) _ §’“))’5 = ula") + U_J,ET)’CS.
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e Some marketing theories suggest the possibility of nonlinear influences of some of the
covariates.

e Example: Adaptation level theory.
— Consumers compare prices to internal reference prices build through experience.

— Around the reference point (price equals reference price) there may be a region of
indifference.

— Suggests a sigmoid-shaped form of the covariate-effect.

= Semiparametric extensions of the multinomial logit model to validate such hypotheses.
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Semiparametric Multinomial Logit Models

e Extend the linear predictor to a semiparametric predictor

l p
m(r) — ’u,;;Oé(T) -+ ’U_Jgr)la —+ Z fj(r)(.fl?w) + Z fj( (;))
=1

j=1+1

where

i@y = @) = £ ).

e The functions fj(r) and f; are modelled using penalised splines.

e Represent a function f(x) as a linear combination of B-spline basis functions:

BB ().

iNgE
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B-spline basis
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Scaled B-splines

B-spline fit
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e Use a large number of basis functions to guarantee enough flexibility but augment a
penalty term to the likelihood to ensure smoothness.

e Approximate derivative penalties are obtained by difference penalties, e.g.

M
1
s (B — Brm—1)* (first order differences)
-
m=2
M
573 (B — 28m—1 + Bm—2)* (second order differences)
m=3

e The smoothing parameter 72 controls the trade-off between fidelity to the data (72

large) and smoothness (72 small).

e Penalty terms in matrix notation:

1 /
— 0K
272

with penalty matrix K = D’D and appropriate difference matrices D.
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Inference

e Two different types of parameters in the model:
— Regression coefficients describing either parametric or semiparametric effects, and

— Smoothing parameters.

e Penalised likelihood for the regression coefficients:

k—1 q p

en(@,8,8) = 1(0r,8,5) = 33"~ pVEGB — ST L5,

r=1j5=1 2 j=q+1 J

e [(a,0,7) is the usual likelihood of a multinomial logit model.

e Maximisation can be achieved by a slight modification of Fisher scoring.
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e Estimate smoothing parameters based on marginal likelihood:

L(1?%) = /Lpen(oz, 6,3, 7*)dads df — max.

e |Laplace approximation to the integral yields a working Gaussian model.

= Integral becomes tractable.
e Fisher scoring algorithm in the working model.

e Marginal likelihood corresponds to restricted maximum likelihood estimation in
Gaussian regression models.
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Results

Coffee Ketchup Yogurt
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e Reference price:
Coffee Ketchup Yogurt
600 700 800 900 1000 2 3 4 5 6 0 : 10 15
Reference price Reference price Reference price
e Difference between reference price and price:
Coffee Ketchup Yogurt
—400 200 0 200 400 -4 -2 0 2 -10 5 0 5 10

Difference between reference price and price Difference between reference price and price

Difference between reference price and price
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Model Evaluation & Proper Scoring Rules

e \We propose to use a more complicated model. Is the increased model complexity
necessary?

e \alidate the model based on its predictive performance.
e \What are suitable measures of predictive performance? What is a prediction?
e \We consider predictive distributions

=7, 70

with the model probabilities
(™) = P(Y =r).

e A scoring rule is a real-valued function S(7,r) that assigns a value to the event that
category 7 is observed when 7 is the predictive distribution.
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e Score: Sum over individuals in a validation data set

S = iS(ﬁ'Z,T@)
1=1

e Let my denote the true distribution. Then a scoring rules is called
— Proper if S(mg,m9) < S(7,mg) for all .

— Strictly proper if equality holds only if 7 = 7.

e Some common examples:

— Hit rate (proper but not strictly proper):

Loif 7)) = max{# (M, ... 7},

0O otherwise.
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— Logarithmic score (strictly proper):

S(#,7;) = log(#1").

— Brier score (strictly proper):

S(mr,ri) = i (]l(ri =7r)— 7%(7”))2

r=1

— Spherical score (strictly proper):
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Model Evaluation & Proper Scoring Rules

e In our data sets:

Coffee Ketchup Yogurt

parametric semipar. parametric  semipar.  parametric semipar.
Hit rate (est.) 0.70 0.70 0.79 0.79 0.82 0.83
Hit rate (pred.) 0.70 0.66 0.78 0.78 0.83 0.81
Logarithmic (est.) -13816.90 -13491.45 -5146.61 -5024.40 -8502.60 -7923.95
Logarithmic (pred.)  -13955.80 -15682.87 -5297.58 -5225.32  -24061.49 -26588.13
Brier (est.) -6912.34 -6789.38 -5192.60 -5222.72 -4261.52 -4044.11
Brier (pred.) -6930.30 -7646.83 -2990.25 -2962.46  -12919.96 -12416.39
Spherical (est.) 12102.09 12181.02 6455.08  6450.31 12678.38 12798.71
Spherical (pred.) 12093.57 11588.11 7688.11 7701.58 3796596  38231.85

e (Coffee data: Parametric model seems sufficient.

e Ketchup data: Improved performance with semiparametric model.

e Yogurt data: Some indication of a need for semiparametric extensions but no definite

dNSWer.
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Software

e Proposed methodology is implemented in the software
package BayesX.

e Stand-alone software for additive and geoadditive regression
models.

e Supports exponential family regression, categorical
regression and hazard regression for continuous time survival
analysis.

e The current version is Windows-only but a Linux version and a connection to R are
work in progress.

e Available from

http://www.stat.uni-muenchen.de/ bayesx
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Summary

Summary

e Semiparametric extension of the well-known multinomial logit model.
e Fully automated fit (including smoothing parameters).

e Model validation based on proper scoring rules.

e Reference: Kneib, T., Baumgartner, B. & Steiner, W. J. (2007). Semiparametric
Multinomial Logit Models for Analysing Consumer Choice Behaviour. Under revision

for AStA Advances in Statistical Analysis.

e A place called home:

http://www.stat.uni-muenchen.de/“kneib
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