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Thomas Kneib Multi-State Models

Multi-State Models

e Multi-state models describe the temporal evolution of discrete phenomena in
continuous time.

e Simple special case: Survival times or more generally duration times.
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Multi-State Models

e Multi-state models describe several transitions between more than two states.

e Examples:
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e Each transition is assigned a separate hazard function Ap(?).

competing risks
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Length of Hospital Stays

e Data on 1876 intensive care patients from the Charité University Hospital in Berlin
collected from February 2000 until July 2001.

e 158 with nosocomial pneumonia.

e Structure of the associated multi-state model:

Intensive care \

infection
discharge /

e Scientific question: Does an infection prolong the length of admission to intensive
care?
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e Significantly reduced hazard for the transition to discharge if an infection is acquired.
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Semiparametric Hazard Specification

e Regression models for the hazard rates:

An(t) = exp(nn(t))

where 7, (t) is a semiparametric, time-dependent predictor.
e Different types of models explained for the human sleep data example:

— Cox-type models:
Mh(t) = gon(t) +2'Bn,
where go n(t) is the log-baseline and x'(3;, comprises parametric effects, e.g. of
gender.

— Special case: Models without any further covariates such as the nosocomial
infection model.
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— Time-varying effects:
n(t) =...+x-gn(t) +...

where gy (t) is the smooth, time-varying effect of a covariate = (for example impact
of cortisol level on transition to REM sleep).

— Frailties:
np(t) = ...+ b+ ...

where b, is a cluster-specific frailty term (for example individual-specific effects to
account for different sleeping behaviour).

— Nonlinear effects:
m(t) =+ ful@) + ...

where f3, is a smooth, nonlinear function of a continuous covariate x (for example
nonlinear effect of cortisol concentration).
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e Nonlinear and time-varying effects are modelled based on penalised splines:

— Approximate unknown functions in terms of flexible basis functions, e.g.
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— Assign an additional penalty to the basis coefficients to enforce smoothness of the
functions.
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e Inference in semiparametric multi-state models relies on
— a counting process representation and
— penalised maximum likelihood estimation.
e The counting process representation also yields residual processes.
e The same methods can also be applied in regression models for survival times.
e Advantages of semiparametric models:
— Inclusion of flexible covariate effects.
— Inclusion of frailties for unobserved heterogeneity.
— Methods imbedded in regression models = tests, confidence intervals, etc.
— Direct estimation of the hazard instead of the cumulative hazard.

— Smooth time-varying effects instead of step functions.
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Advantages of Multi-State Models

e Simultaneous analyses of several transitions allows for a relative interpretation of
hazards.

e Example: Analysis on survival times while accounting for nosocomial infections:
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e Hypothetical result:

— No differences in death rates between patients with and without infection
— Empirical observation: More deaths following infection.
e Explanation obtained from the multi-state model:
— Lower discharge rate for patients with infection results in longer hospital stays.
— Patients with infection are under risk for death for a longer time.

= Take care when interpreting separate hazard functions.
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e Multi-state models also allow to study the temporal evolution of the phenomena of
Interest.

e Earlier studies on nosocomial infections often treated the infection status as a
time-constant risk factor.

e Misspecification of the multi-state model:
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e Impact on the estimation results:
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= The impact of infection is over-estimated in the misspecified model.
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Summary & Outlook

e Multi-state models are a useful statistical tool to study temporal dynamics of health-
related processes.

e The semiparametric model specification allows to include flexible covariate structures
for example in terms of frailties, time-varying effects or nonlinear effects.

e Implemented in the free software package BayesX:
http://www.stat.uni-muenchen.de/ "bayesx
e Survival time regression is included as a special case.

e The counting process representation enables the construction of martingale residuals.
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e A place called home:

http://www.staff.uni-oldenburg.de/thomas.kneib
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