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Thomas Kneib Overview

Overview

• Linear and additive mixed models.

• Akaikes information criterion (AIC).

• Marginal AIC

• Conditional AIC

• Application: Childhood malnutrition in Zambia
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Linear and Additive Mixed Models

• Mixed models form a very useful class of regression models with general form

y = Xβ + Zb + ε

where β are usual regression coefficients while b are random effects with distributional
assumption [

ε
b

]
∼ N

([
0
0

]
,

[
σ2I 0
0 D

])
.

• Denote the vector of all unknown variance parameters as θ.

• In the following, we will concentrate on mixed models with only one variance
component where

b ∼ N(0, τ2I) or b ∼ N(0, τ2Σ)

with Σ known and therefore θ = (σ2, τ2).
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• Special case I: Random intercept model for longitudinal data

yij = x′ijβ + bi + εij, j = 1, . . . , Ji, i = 1, . . . , I,

where i indexes individuals while j indexes repeated observations on the same
individual.

• The random intercept bi accounts for shifts in the individual level of response
trajectories and therefore also for intra-subject correlations.

• Extended models include further random (covariate) effects, leading to random slopes.
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• Special case II: Penalised spline smoothing for nonparametric function estimation

yi = m(xi) + εi, i = 1, . . . , n,

where m(x) is a smooth, unspecified function.

• Approximating m(x) in terms of a spline basis of degree d leads (for example) to the
truncated power series representation

m(x) =
d∑

j=0

βjx
j +

K∑

j=1

bj(x− κj)d
+

where κ1, . . . , κK denotes a sequence of knots.

• The spline approximation leads to a piecewise polynomial fit of degree d on the
intervals defined by the knots under appropriate smoothness restrictions.
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Thomas Kneib Linear and Additive Mixed Models

• Penalised estimation to avoid overly wiggly function estimates:

(y −Xβ −Zb)′(y −Xβ −Zb) + λb′b → min
β,b

where X and Z correspond to design matrices obtained from the truncated power
series representation.

• The smoothness of the curve is determined by the smoothing parameter λ.

• Equivalent to assuming the random effect distribution b ∼ N(0, τ2I) and setting the
smoothing parameter to

λ =
σ2

τ2
.

• Works also for other basis choices (e.g. B-splines) and other types of flexible modelling
components (varying coefficients, surfaces, spatial effects, etc.).
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• Additive mixed models consist of a combination of random effects and flexible
modelling components such as penalised splines.

• Example: Childhood malnutrition in Zambia.

• Determine the nutritional status of a child in terms of a Z-score.

• We consider chronic malnutrition measured in terms of insufficient height for age
(stunting), i.e.

zscorei =
cheight i −med

s
,

where med and s are the median and standard deviation of (age-stratified) height in
a reference population.
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• Additive mixed model for stunting:

zscorei = x′iβ + m1(cagei) + m2(cfeedi) + m3(magei) + m4(mbmii)

+m5(mheighti) + bsi
+ εi,

with covariates

csex gender of the child (1 = male, 0 = female)
cfeed duration of breastfeeding (in months)
cage age of the child (in months)
mage age of the mother (at birth, in years)
mheight height of the mother (in cm)
mbmi body mass index of the mother
medu education of the mother (1 = no education, 2 = primary school, 3 =

elementary school, 4 = higher)
mwork employment status of the mother (1 = employed, 0 = unemployed)
s residential district (54 districts in total)

• The random effect bsi
captures spatial variability induced by unobserved spatially

varying covariates.
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• Marginal perspective on a mixed model:

y ∼ N(Xβ, V )

where
V = σ2I + ZDZ ′

• Interpretation: The random effects induce a correlation structure and therefore enable
a proper statistical analysis of correlated data.

• Conditional perspective on a mixed model:

y|b ∼ N(Xβ + Zb, σ2I).

• Interpretation: Random effects are additional regression coefficients (for example
subject-specific effects in longitudinal data) that are estimated subject to a
regularisation penalty.
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• Best linear unbiased estimates / predictions in the linear mixed model:

β̂ =
(
X ′V −1X

)−1
X ′V −1y, b̂ = DZ ′V −1(y −Xβ̂).

• Unknown variance parameters θ are estimated using maximum likelihood (ML) or
restricted maximum likelihood (REML).

• Interest in the following is on model choice in linear mixed models with the special
form

D = blockdiag(τ2
1Σ1, . . . , τ

2
q Σq)

(q independent random effects) for known correlation matrices Σ1, . . . ,Σq and in
particular in models with only one variance component such as

D = τ2I.
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• Without loss of generality, we consider the comparison of

M1 : D = blockdiag(τ2
1Σ1, . . . , τ

2
q Σq)

and
M2 : D = blockdiag(τ2

1Σ1, . . . , τq−1Σq−1).

• The two models are nested since M1 reduces to M2 when τ2
q = 0.

• Random Intercept: τ2
q > 0 versus τ2

q = 0 corresponds to the inclusion and exclusion
of the random intercept and therefore to the presence or absence of intra-individual
correlations.

• Penalised splines: τ2
q > 0 versus τ2

q = 0 differentiates between a spline model and
a simple polynomial model. In particular, we can compare linear versus nonlinear
models.
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Akaikes Information Criterion

• Data y generated from a true underlying model described in terms of density g(·).

• Approximate the true model by a parametric class of models fψ(·) = f(·; ψ).

• Measure the discrepancy between a model fψ(·) and the truth g(·) by the Kullback-
Leibler distance

K(fψ, g) =
∫

[log(g(z))− log(fψ(z))] g(z)dz

= Ez [log(g(z))− log(fψ(z))] .

where z is an independent replicate following the same distribution as y.

• Note that K(fψ, g) ≥ 0 and K(fψ, g) = 0 iff fψ = g almost everywhere.

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models 11



Thomas Kneib Akaikes Information Criterion

• Decision rule: Out of a sequence of models, choose the one that minimises K(fψ, g).

• In practice, the parameter ψ will have to be estimated as ψ̂(y) for the different
models.

• To focus on average properties not depending on a specific data realisation, minimise
the expected Kullback-Leibler distance

Ey[K(fψ̂(y), g)] = Ey[Ez

[
log(g(z))− log(fψ̂(y)(z))

]
]

• Since g(·) does not depend on the data, this is equivalent to minimising

−2Ey[Ez[log(fψ̂(y)(z))]] (1)

(the expected relative Kullback-Leibler distance).
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• The best available estimate for (1) is given by

−2 log(fψ̂(y)(y)).

• While (1) is a predictive quantity depending on both the data y and an independent
replication z, the density and the parameter estimate are evaluated for the same data
y.

⇒ Introduce a correction term.

• Let ψ̃ denote the parameter vector minimising the Kullback-Leibler distance.

• Then

AIC = −2 log(fψ̂(y)(y)) + 2 Ey[log(fψ̂(y)(y))− log(fψ̃(y))]

+2Ey[Ez[log(fψ̃(z))− log(fψ̂(y)(z))]]

is unbiased for (1).
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• Consider the regularity conditions

– ψ is a k-dimensional parameter with parameter space Ψ = Rk (possibly achieved
by a change of coordinates).

– y consists of independent and identically distributed replications y1, . . . , yn.

• In this case, the AIC simplifies since

2Ez

[
log(fψ̃(z))− log(fψ̂(y)(z))

]
a∼ χ2

k,

2
[
log(fψ̂(y)(y))− log(fψ̃(y))

]
a∼ χ2

k

and therefore an (asymptotically) unbiased estimate for (1) is given by

AIC = −2 log(fψ̂(y)(y)) + 2k.

• In linear mixed models, two variants of AIC are conceivable based on either the
marginal or the conditional distribution.
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• The marginal AIC relies on the marginal model

y ∼ N(Xβ, V )

and is defined as

mAIC = −2l(y|β̂, θ̂) + 2(p + q),

where the marginal likelihood is given by

l(y|β̂, θ̂) = −1
2

log(|V̂ |)− 1
2
(y −Xβ̂)′V̂

−1
(y −Xβ̂)

and p = dim(β), q = dim(θ).
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• The conditional AIC relies on the conditional model

y|b ∼ N(Xβ + Zb, σ2I)

and is defined as
cAIC = −2l(y|β̂, b̂, θ̂) + 2(ρ + 1),

where

l(y|β̂, b̂, θ̂) = −n

2
log(σ̂2)− 1

2σ̂2
(y −Xβ̂ −Zb̂)′(y −Xβ̂ −Zb̂)

is the conditional likelihood and

ρ = trace
((

X ′X X ′Z
Z ′X Z ′Z + σ2D

)−1 (
X ′X X ′Z
Z ′X Z ′Z

))

are the effective degrees of freedom (trace of the hat matrix).
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• The conditional AIC seems to be recommended when the model shall be used for
predictions with the same set of random effects (for example in penalised spline
smoothing).

• The marginal AIC is more plausible when observations with new random effects shall
be predicted (e.g. new individuals in longitudinal studies).

• Still, both variants have been considered in both situations and seem to work
reasonably well (see for example Wager, Vaida & Kauermann, 2007).
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Marginal AIC

• Consider the special case of comparing

M1 : y = Xβ + Zb + ε, b ∼ N(0, τ2I)

versus
M2 : y = Xβ + ε

i.e. decide on the inclusion of a random effect.

• Corresponds to the decision τ2 > 0 (M1) versus τ2 = 0 (M2).
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• Model M1 is preferred over M2 when

mAIC1 < mAIC2 ⇔ −2l(y|β̂1, τ̂
2, σ̂2

1) + 2(p + 2) < −2l(y|β̂2, 0, σ̂2
2) + 2(p + 1)

⇔ 2l(y|β̂1, τ̂
2, σ̂2

1)− 2l(y|β̂2, 0, σ̂2
2) > 2.

• The left hand side is simply the test statistic for a likelihood ratio test on τ2 = 0
versus τ2 > 0.

• Under standard asymptotics, we would have

2l(y|β̂1, τ̂
2, σ̂2

1)− 2l(y|β̂2, 0, σ̂2
2)

a,H0∼ χ2
1

and the marginal AIC would have a type 1 error of

P (χ2
1 > 2) ≈ 0.1572992

• Common interpretation: AIC selects rather too many than too few effects.
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• In contrast to the regularity conditions for likelihood ratio tests, we are testing on
the boundary of the parameter space!

• The likelihood ratio test statistic is no longer χ2-distributed but (approximately)
follows a mixture of a point mass in zero and a scaled χ2

1 variable.

• The point mass in zero corresponds to the probability

P (τ̂2 = 0)

that is typically larger than 50%.

• Similar difficulties appear in more complex models with several variance components
when deciding on zero variances.

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models 20



Thomas Kneib Marginal AIC

• The classical assumptions underlying the derivation of AIC are also not fulfilled.

• The high probability of estimating a zero variance yields a bias towards simpler
models:

– The marginal AIC is positively biased for twice the expected relative Kullback-
Leibler-Distance.

– The bias is dependent on the true unknown parameters in the random effects
covariance matrix D and this dependence does not vanish asymptotically.

– Compared to an unbiased criterion, the marginal AIC favors smaller models
excluding random effects.

• This contradicts the usual intuition that the AIC picks rather too many than too few
effects.
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• Simulated example: yi = m(x) + ε where

m(x) = 1 + x + 2d(0.3− x)2.

• The parameter d determines the amount of nonlinearity.
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On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models 22



Thomas Kneib Marginal AIC

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ML

nonlinearity parameter d

se
le

ct
io

n 
fr

eq
ue

nc
y 

of
 th

e 
la

rg
er

 m
od

el

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

REML

nonlinearity parameter d

se
le

ct
io

n 
fr

eq
ue

nc
y 

of
 th

e 
la

rg
er

 m
od

el

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models 23



Thomas Kneib Conditional AIC

Conditional AIC

• Vaida & Blanchard (2005) have shown that the conditional AIC is asymptotically
unbiased for the expected relative Kullback Leibler distance for given random effects
covariance matrix D.

• If D is estimated consistently, one would hope that their result carries over to the
case of estimated D̂.

• Simulation results seem to indicate that this is not the case.
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• Surprising result of the simulation study: The complex model including the random
effect is chosen whenever τ̂2 > 0.

• If τ̂2 = 0, the conditional AICs of the simple and the complex model coincide (despite
the additional parameters included in the complex model).

• The observed phenomenon could be shown to be a general property of the conditional
AIC:

τ̂2 > 0 ⇔ cAIC(τ̂2) < cAIC(0)

τ̂2 = 0 ⇔ cAIC(τ̂2) = cAIC(0).

• Principal difficulty: The degrees of freedom in the cAIC are estimated from the same
data as the model parameters.
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• Liang et al. (2008) propose a corrected conditional AIC, where the degrees of freedom
ρ are replaced by

Φ0 =
n∑

i=1

∂ŷi

∂yi
= trace

(
∂ŷ

y

)

if σ2 is known.

• For unknown σ2, they propose to replace ρ + 1 by

Φ1 =
σ̃2

σ̂2
trace

(
∂ŷ

y

)
+ σ̃2(ŷ − y)′

∂σ̂−2

∂y
+

1
2
σ̃4 trace

(
∂2σ̂−2

∂y∂y′

)
,

where σ̃2 is an estimate for the true error variance.
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• The corrected conditional AIC shows satisfactory theoretical properties.

• However, it is computationally cumbersome:

– The first and second derivative are not available in closed form and must be
approximated numerically (by adding small perturbations to the data).

– Numerical approximations require n and 2n model fits. In our example, computing
the corrected conditional AICs would take about 110 days.

– In addition, the numerical derivatives were found to be instable in some situations
(for example the random intercept model with small cluster sizes).
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Application: Childhood Malnutrition in Zambia

• Model equation:

zscorei = x′iβ + m1(cagei) + m2(cfeedi) + m3(magei) + m4(mbmii)

+m5(mheighti) + bsi
+ εi.

• Parametric effects are not subject to model selection.

⇒ 26 = 64 models to consider in the model comparison.
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-0.21 0 0.21
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• The six best fitting models:

ML REML

cfeed cage mage mheight mbmi district cAIC mAIC cAIC mAIC

14 + + – – – + 4125.78 4151.10 4125.78 4173.72

34 + + + – – + 4125.78 4153.10 4125.78 4175.72

36 + + – + – + 4125.78 4153.10 4125.78 4175.72

38 + + – – + + 4125.78 4153.10 4125.78 4175.72

54 + + + + – + 4125.78 4155.10 4125.78 4177.72

56 + + + – + + 4125.78 4155.10 4125.78 4177.72

58 + + – + + + 4125.78 4155.10 4125.78 4177.72

64 + + + + + + 4125.78 4157.10 4125.78 4179.72
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Summary

• The marginal AIC suffers from the same theoretical difficulties as likelihood ratio
tests on the boundary of the parameter space.

• The marginal AIC is biased towards simpler models excluding random effects.

• The conventional conditional AIC tends to select too many variables.

• Whenever a random effects variance is estimated to be positive, the corresponding
effect will be included.

• The corrected conditional AIC rectifies this difficulty but comes at a high
computational price.
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• Open questions:

– Is there a computationally advantageous version / representation of the corrected
conditional AIC?

– Can the marginal AIC be corrected?

– Is there a working likelihood ratio test based on the corrected conditional AIC?
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