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Forest health data

e Data collected in yearly forest health inventories carried out in a forest in northern
Bavaria from 1983 to 2001.

e 33 observation points with beeches in an area extending 15 km from east to west
and 10 km from north to south.

e 1,;, the defoliation degree of beech 7 in year ¢, is measured in three ordered categories
(multicategorical response):

y;+ = 1 no defoliation,
yir = 2 defoliation 25% or less,
y;it = 3 defoliation above 25%.

e Covariates:

t calendar time,

S; site of the beech,

a;; age of the tree in years,

u;¢ further (mostly categorical) covariates.
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Figure 1. Temporal development of the frequency of
the damage states:

— no damage,
- - - medium damage,
severe damage.

[ [ [ [
1983 1989 1995 2001
calendar time
=
5|
=
O ®B O
E 5 = ]
= g = E ® 0 g
m
= E = B o E B B E O
EID = = O

m O Dmﬁ "= = @ o8 g = m
Figure 2: Spatial distribution of the beeches and boEE 5 = 8 m
percentage of time points for which a beech was - " N —
O.‘O 1.0

classified to be damaged (damage state 2 or 3).
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Multicategorical models for ordinal response

e Response y;; follows multinomial distribution with three ordered categories r = 1, 2, 3.

e Model the cumulative probabilities
P(yis <7) = F(0, — nit)

with thresholds —oco = 6y < 61 < 65 < 63 = oo and linear predictor ;.

e F'(:) can be any cumulative distribution function:

standard normal —- cumulative probit model,
logistic —> cumulative logit model.
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e Consider a random variable with density f = F” and expectation 7;;.

— Linear predictor determines shift on latent scale.
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Figure 3: The shaded areas
n represent P(y;; < 2) for different
values of n;;.
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e Limitations of a purely parametric approach:

— Spatio-temporal structure of the data implies spatial and temporal correlations.
— Nonlinear effects of continuous covariates?
— Complex interactions between covariates?

— Structured additive regression models.
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Penalized structured additive regression

e Replace usual parametric predictor with a flexible semiparametric predictor

Nie = f1(t) + fa(ai) + f3(t, ai) + fopar(si) + uipy,

where

— f1 and f5 are nonparametric functions of calendar time and age,
— f3 is an interaction surface between calendar time and age,

— fspat 1S @ spatial function, and

— u is a vector of further covariates with parametric effects.

e Structured additive regression extends (and combines) generalized additive mixed
models, geoadditive models and varying coefficient models.

e Allows unified treatment of all effects within a Bayesian framework.
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o f1(t), fa(as): P-splines

— Approximate f; by a B-spline of a certain degree (basis function approach).

— Penalize differences between adjacent parameters of basis functions to ensure
smoothness.

— Alternatives: Random walks, autoregressive priors.

e f3(t,a;:): Two-dimensional extensions of P-splines

— Define two-dimensional basis functions based on tensor products of one-dimensional
B-splines.

— Use priors from spatial statistics for penalization.

— Alternative: Varying coefficient models, if one of the interacting variables is
categorical.
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® fopat(si): Markov random fields
— Consider two trees as neighbors if their distance is less than (e.g.) 1.2 km.

— Assume that the expected value of fq,ut(s) is the average of the function
evaluations of adjacent sites.

® fopat(s;): Stationary Gaussian random fields (kriging)
— Spatial effect follows a zero mean stationary Gaussian stochastic process.

— Correlation of two arbitrary sites is defined by an intrinsic correlation function.

e Split up spatial effect into structured and unstructured part. The unstructured effect
can be modelled by i.i.d. random effects, the structured effect by a MRF or a GRF.
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Mixed model representation

e All nonparametric effects can be expressed as the product of a design matrix Z and
a vector of regression coefficients (3.

e Rewrite the structured additive predictor in matrix notation as

n = Z101 + 222 + Z303 + ZspatBspat + U7.
e Bayesian approach: Assign an appropriate prior to [3;.

e All priors can be cast into the general form

1
p(B;|77) o exp _2—7_25;Kj5j
J

where K is a penalty matrix and Tj2 Is @ smoothing parameter.

e Type of the covariate and prior beliefs about the smoothness of f; determine special
Zj and Kj.
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e Accuracy of the estimation relies heavily on the choice of the smoothing parameters.

e |dea: Reexpress the structured additive regression model as a multicategorical mixed
model and use mixed model methodology.

e Each parameter vector 3; can be partitioned into an unpenalized part (with flat prior)

and a penalized part (with i.i.d. Gaussian prior) yielding a variance components
model

= XUnPGunp | xpen gpen
with
p(BY"P) x const BPer ~ N (0, A)
and
A = blockdiag (711, ..., 7:1).
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e Regression coefficients are estimated via modified Fisher scoring.

e The mixed model representation allows for restricted maximum likelihood / marginal
likelihood estimation of the variance components:

e From a Bayesian perspective, we get empirical Bayes / posterior mode estimates.
e Closely related to penalized likelihood.

e Fahrmeir, Kneib and Lang (2004) derive numerically efficient formulae that allow the
computation even for fairly large data sets.
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Results
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Figure 4: Time trend.
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Figure 5: Age effect. 7 39 71 103 135 167 199 231
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Figure 7: Unstructured spatial effect.

Figure 6:

Structured spatial effect.
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Figure 8: Interaction effect.
Y Y
Y 1 2 31lly 1 2 3
1 | 904 04 0 1850 118 O
Table 1: Classifications with and 2 | 108 426 5 2150 386 3
without spatial effect. 3 0 16 24 3 0 34 6
12.5% 19.7%
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Software

e Estimation was carried out using BayesX, a public domain software package for
Bayesian inference.

e Available from

http://www.stat.uni-muenchen.de/“lang/bayesx
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e Features (within a mixed model setting):

— Responses:  Gaussian, Gamma, Poisson, Binomial, ordered and unordered
multinomial.

— Continuous covariates and time scales: Random Walks, P-splines, autoregressive
priors for seasonal components.

— Spatial Covariates: Markov random fields, stationary Gaussian random fields,
two-dimensional P-Splines.

— Interactions: two-dimensional P-splines, varying coefficient models with continuous
and spatial effect modifiers.

— Random intercepts and random slopes.
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